

"I don't love studying. I hate studying. I like learning. Learning is beautiful."

"An investment in knowledge pays the best interest."

Hi, My Name is

Mathematical Science for CSIR NET PI-AIM Anand Institute of Mathematics

↓ +91-011-26567268, +91-9891879909 anandinstituteofmaths@gmail.com

ANAND INSTITUTE OF MATHEMATICS

Founder & Director Anand Kumar (M.Tech., Ph.D.(D), JNU)

 ± 1

HIMANSHOOT.

9029359640

Summary, This notes was written under guidance of Anand Sir. I tried my best to keep it essors free, but in case any mistake is found then no one will sesponsible for it, as it may just Human Exxox.

 $k \geq 3$

Some special Type of matrices \rightarrow

Row matrix + A matrix having exactly one row but any no of columns

TA PL TIME I

 -7.1

$$
eg \left[13\ 5\ 7\right]_{1\times 4}
$$

A matrix having exactly one column but any no of zows. Column $ma + b$

Hull matrix 4 A matrix whose each element of entry is equal to zero essetting is known as Null matrix or zero matrix

It is denoted by $Q = O_{\text{wxx}} = [O]_{\text{wxx}}$

$$
\begin{bmatrix} e^{-1}g \\ 0 & 0 \end{bmatrix}_{2\times 2}
$$

Square matrix-> A matrix having equal no of routs) and column(s) is known as square matrix $ie \cdot A = [\alpha_{ij}]_{m \times n}$ is square matrix if $m = n$. And it is said to be square matrix of order m or n-rowed square matrix or n-columned sq. matrix.

 a_{2n}

 $a_{\eta\eta_1}$ $a_{\eta\eta_2}$

Then:

is sq. matrix \int of order n.

apin Sixin super diagonal

Principal Diagonal

 \searrow is \vee \searrow sub \vee \vee \vee \vee Principal Diagonal Lines The line along which ets of the form α_{ij} (or α_{ij} $(i = j)$ lies is known as Principal Diagonal lines of $A = [a_{ij}]$, $i=1,2,...,n$
And the elements along $\rho \cdot D \cdot L$ is known as diagonal elts of H . Motes π elements along the number of diagonal elements in A is equal to \underline{n} . x_{12} nT_1

 S 08 $(a_{ij} | i=j+i)$ lies is known as Super Diagonal lines of $A = [a_{ij}]_{1}$ $n \times n$ $\frac{160e^{t}}{t}$ (2) $\frac{1}{t}$ order (A) = n m the number of e^{t} diagonal elts of $A = \frac{1}{n-1}$ sorteine Sub Diagonal Lines The Line along which ets of h and them h_{eff} of xirtuin a the form, α_{tot} (or α_{U}) of disti diamo e b resili

 α α α

Ģ.

ē

 α α α

O.

I

C

ķ.

 $\overline{2}$.

 α α α

TAB

LATB)ⁿ = $\mu_1^{m_1}$ $n_{c_1} \mu_1^{m_1}$ $n_{c_2} \mu_1^{m_2}$ $\mu_2^{m_1}$ \cdots + B \bigoplus If $A = [a_{ij}]_{m \times n}$ whose each sow sum to a and $B = [b_{jk}]_{\eta \times \rho}$ whose d each som sum to Then each row sum of AB will be ab. α_{ij} by α_{ij} (i, k)th alt of $AB = \sum_{i=1}^{M} a_{ij} b_{jk}$

Sum of eit of in ith sow of $AB = \frac{P}{Z} \left(\sum_{k=1}^{n} a_{ij} b_{jk} \right)$ Now, interchanging the order summation we get,

Sum of let of in i-th row of
$$
AB = \sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{p} b_{jk} \right)
$$

\n
$$
= b \sum_{j=1}^{n} a_{ij}
$$
\n
$$
= b \sum_{j=1}^{n} a_{ij}
$$
\n
$$
= b \sum_{j=1}^{n} a_{ij}
$$

 ω If $A = [a_{ij}]_{m \times n}$ whose each sow column sum to α , $B = [b_{ij}]_{max}$ whose each column sum to b, then each colom sum of AB will be ab.

 $\frac{\rho f}{\rho}$ (*J*, k)th elt² of $AB = \sum_{i=1}^{m} a_{ij} b_{jk}$ Sum of elts in k-th column = $\sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} b_{j,k})$

 $= \sum_{i=0}^{\infty} b_{jK} (a_i)$

 $\frac{d\mathbf{p}}{d\mathbf{p}} = \mathbf{p} \cdot \$

Now, interchanging order of summation, $= \sum_{j=1}^{m} b_{j} R^{j} \left(\sum_{j=1}^{m} c_{j}^{i} \right)$

1 If som of the etts of each row of a sq. matrix A is α' then sum of each sowlen element of A^n is α^n . $rac{\rho f}{\sqrt{a^2 + \rho^2}}$ $rac{\rho}{a^3}$ $rac{\rho}{a^n}$ $rac{1}{a^n}$ $rac{1}{a^n}$

જી ABSTRACT ALGEBRA FUNDAMENTAL SETS:-N = [1,2,3, 4 cm => set of natural number ₩ and so on used for finite or infinite sets. G Ø $Z = \{0, \pm 1, \pm 2, \pm 3, \ldots \}$ set of integers. 5 ● $0 = \frac{7}{7}m/m, n \in Z, n \neq 0\} \Rightarrow set \not\subset \text{rational no}.$ C $R = 8$ et of real no. $\overline{\rightarrow}$ 9 œ All numbers which lies on the number Line. $4 = \{x + iy; x, y \in R\} \Rightarrow set of complex no.$ Field starts from 10 and after that R & f are
extension of field.
N and Z Ere never field.
1 > largest extension field. K is an extension field of R such that $R \subseteq K \subseteq R$ then K is 2 x is an extension field of a such that $a \subset R$
then K has infinite possibilities.
Reason: $a(6)$ Tat blad a b 6 of 3
 $a(6)$ = 7 at blad a b 6 of 3 $Q(f) = \{a+b\}$ $f' = a, b \in \mathbb{C}$ a where b is any prime and prince are infixi $\uparrow d \in \mathfrak{A}(\uparrow p)$

Dimension = deg. of extension = no. of fore variables

⊛ $O(2)^{3}$ = { $0 + b/2$ } $^{13} + C(2)^{13}$ a, b, c \in 0 ? $0\left(3\right)^{1\prime\prime} = 10 + b(3)^{1\prime\prime} + c(3)^{2\prime\prime} + d(3)^{3\prime\prime} + q, b, c, d \in 0$ # Q (1) $\frac{1}{4}$ = {a + b (1) $\frac{1}{4}$ a, b \in 0 } $f(x) = x^{Y-1} = (x^2-1)(x^2+1)$ $\sqrt{211^{14} \frac{66277}{4}}$ $= 7a + b(i) | a,b \in \mathbb{Q}$ $=$ \uparrow $\qquad \qquad$ = $Q[i]$ \Rightarrow $f(x) = x^2$ i.e. Q(1) "is equivalent to OFiJ # $R[i]$ polynomial is $f(x) = x^2 + 1$
 $x^2 + 1$ Cannot be factor over R then $f(f)$ $= \left\{ \begin{array}{c|c} 1 & a,b \in R \end{array} \right\}$ $=$ ϕ If degifted a then I exactly a complex
not of $f(x) = 0$
let a, a, a, a, are a complex roots of $f(x) = 0$
then $f(x) = [x-a, (x-a)]$ are a complex roots of $f(x) = 0$
then degree of paymmed or extension is 1. ₩ 4(a) = { x | x Ef ? = 4
so we son conte extension of 1 is also 1

 $105 - 9 = 105 - 9 - 110$ serveder so we can of is the highest extension Ques Construct 4 (2) 3 over f $f(2)^{1/3} = f(x) = x^{3}-3 = (x-a) (x-a)$ (x-92) (x-93)
over to
then # off variable is 1. $4(2)^{1/3}$ = {10 | 0 e + } = + Ques Construct 4 [1] over 4.
 $f[i] = x^2 + (-x+i)(x-i)$ over 4.
Then 4 [i] no. of variable - $767 - 1190643$ Construction of Zn $z_n: \lceil 0, 1, 2, \ldots n-1 \rceil \to \text{set of integer modulo}$ of set of all residual clauses modulo n Carainality of Zn is n because it contains $Z_{A} = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 0 & 1 & 2 \end{bmatrix}$ $70, 1, 2, ... 1, 300$

= { [0], [1], [2], [1] = = [n-1] } Representation of [0] in mathematical terms 3 $[0] = 0 = 7x67$
 $\nu = 0$ 3 ● $[1] = 1 = [xCZ | n|x-1]$ \bullet $[2] = 25\{x67 | x|^{2} \}$ $[n-1] = n-1 = \{x \in Z | n | x - (n-1)\}$ then $Z_n = \begin{cases} 0, 1, 2, \dots, n-1 \end{cases}$
 $\Rightarrow 0(Z_n) = |Z_n| = n \Rightarrow n \ge 1$

order or Cardinality of Z_n is n $Fyample! - 76 - 70, 1, 2, 3, 4, 5.3$ $fnen_0(z_6) = |z_6| = 6$ $\sqrt{63} = \sqrt{x} \in Z \left\{ 6 \mid x - 0 \right\} = \sqrt{[-18, -12, -6, 0, 6, 12 - 3]}$ $\lceil 1 \rceil$ = $\lceil x \rceil$ \leq $\lceil 6 \rceil$ $x - 1 \rceil$ $\lceil 7 \rceil$ $\lceil 7 \rceil$ $\lceil 7 \rceil$ $\lceil 7 \rceil$ $\lceil 3 \rceil$ $\lceil 9 \rceil$ $\lceil 2 \rceil = \lceil x \rceil = \lceil 6 / x - 2 \rceil = \lceil -16, -10, -11, 2, 8, 11, 20 \rceil$ $[3] = [x \in Z | 6 | x-3]$ $= 7 - 15, -9, -3, 3, 9, 15, 21 - 7$ $[43 - 126 + 216]$
 $x - 47 - 14 - 8, -3, 4, 10, 16, 22 - 3$ $\lceil \frac{1}{2} \rceil$ $\lceil \sqrt{2} \rceil$ $\lceil \sqrt{2} \rceil$ $\lceil \sqrt{2} \rceil$ $\lceil \frac{1}{2} \rceil$ $\lceil \frac{1}{2} \rceil$, $\lceil \frac{1}{2} \rceil$

then $Z_6 = \{0, 1, 2, 3, 4, 5\}$ Quest- $R = Z_5$ then $\frac{1}{3}EZ_5$? $S_{\underline{\alpha}}|n\rangle = i\int a|b|+|n\rangle = J \times F$ such that $b = ax$ ff 3/1 then f x $f \leq f$ such that $1 - 3x$ $31.302, 262$ \Rightarrow $\frac{1}{2}$ = 2 \leq $\frac{2}{3}$ \Rightarrow $\frac{1}{2}$ \in $\frac{2}{5}$ Ques $R = Z_6$ then $\frac{1}{3}$ \in Z_6 ? if alb then $\frac{7}{5} \times 68$ s.t. b= ax
if $3|1$ then $\frac{7}{5} \times 62$ s.t. $1 = 3x$ $\int x \in Z_6$ $\frac{\sqrt{5}}{2}$ But there is no $x + z_6$ s.t. $1 = 3x$
then $\frac{1}{3} + z_6$. $\frac{\text{Note:} if all b then J \times f z_n \text{ s.t. } b = ax}{ff gcd of (q,n) | b then x f' z_n}$ For example $\frac{1}{7}$ 62 $gcd of ^(7,10) = 1$
and 1 divides 1 $\overline{\&}0 \neq 6$ $\overline{z_{10}}$

 $\frac{6.0}{7} = 3.62_{10}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{2}{10}$ $\frac{36}{8}$ $\frac{2}{10}$ <u> Ques</u> $\frac{9cd09}{104}$ (2, 10) = 2 but 2 x 3 $2e^{2}$
 210 Ques $gcd of (8, 10) = 2$ and $2/2$. $\Rightarrow 2=\sqrt{x}$ $\frac{2}{8}=x$ then $x=4$ $\in Z_{10}$ $\langle \bullet$ $2 = 32$ $13 + 21$ Ques. Ques $2e^{2}$ (2100) $90d$ of $(3,100)$ = $1 \times 1/2$

step revenue $iL q, b = 0$ $= 5$ erther and $= 0$ $y \sim 6$ th 0.4 $\frac{\text{mapling} = A \text{mapling } 7 : A \rightarrow B \text{ is}}{\text{graph of } 6 \text{ be one-one} \text{implging}}$
 $\frac{\text{tail to be one-one} \text{implging}}{\text{then } x = y}$. <u> One - One ma</u> $T: Z \rightarrow Z$ defined by $T(x) = 2x$, $2EZ$
is one -one mapping?
 $T: Z \rightarrow Z$ defined by $T(x) = 2x$ Ques. $\frac{1}{\sqrt{2}}$ let $\tau(x) = \tau(y)$
(x) = $\alpha(y)$ $Q(x-y)$ 270 then $x-y=0$ if $z+1$ is an
 $x=y$ degral domein and $z(x-y)=0$ then I is one - one $T: Z_{10} \rightarrow Z_{10}$ defined by $T(x) = 2x$
Is mapping is one tone? <u> aues</u> $\frac{\delta^{d}}{2}$ $\tau(\mathsf{x}) = \tau(\mathsf{y})$ if we choose any thor no. $\frac{1756}{100}$ $\frac{176}{100}$ $\frac{176}{100}$ $\frac{176}{100}$ $\frac{176}{100}$ $9(y-y)=0$ to product of two non-zero no. is zeue so it is
not an integrationnement $(2_{10}, +, \cdot)$ is not an integral domain $T(x) = 0$ 0.6210 then $t(0) = 2.0 = 0$
5 $t210$ then $t(0) = 2.5 = 10 \pmod{10} > 0$ $0.7027(5)$ but $0 \neq 5$ $12.7:2_{10} \rightarrow 2_{10}$ is not one - one.

Lo 15 not 1 ve nor -ver. because 2.3626 $8.4.$ 2.3 20 where 23 are non-2010 $\frac{Quen\cdot T:Z_6\Rightarrow Z_6\text{ defined by }T(x)=rx}{(s\text{ one - only mapping})}$ $\frac{f(x,y)}{f(x)} = \frac{f(x) - f(y)}{f(x) - f(y)}$ $Aew + E6$ [: $gcdof(S, 6) = 181/17$] then $\frac{1.5x}{5}$ f.5y As value of $\frac{1}{5}$ in mod 6 Ps 5 , i.e. $\frac{1.513132}{x.5}$ $5.54 = 5.54$ $25x - 254$ $x = 1.2$
 $y = 1.3$
 $y = y$
 $y = 1.4$
 $y = 1.5$
 $y = 0.4$
 $y = 1.4$
 $y = 1.5$
 $y = 1.4$
 $y = 1.5$
 $y = 1.4$
 $y = 1.5$
 $y =$ <u> Obes:-</u> $T: z_8 \rightarrow z_8$ defined by $T(x) = 3x$
is one -one ($let T(x) = T(y)$ $\begin{array}{lll}\n\text{Nou} & \frac{1}{3} \\
\hline\n\end{array}$ T: Zao Zao defined by T(W-6x Clues 0.6790 then $T(s) = 6.0 = 0$ $\frac{2n}{2}$ $10 + 290$ then $T(10) = 6.10 = 60 = 0$ $\frac{1}{10}$ (0) $\frac{1}{10}$ for $\frac{1}{10}$ f

) DE 1.) First order & Ist Degree Equation dy = f (x,y)
dx
— Vaucable Separation Lineau Déff. Eqn - Exact Diff. Eqⁿ 11.) Firest Order & Higher Degree Claircatit 18 Egn - Singular soin III) Existence le Uniqueness Th^{om} (EUT) - To solve Initial Value Problem (IVP), Ist Order \mathbb{E}) Wronskian I) Higher Order Diff eqⁿ urits constt coefficient VI) Second Order Linear Diff. eqⁿ with Variable Coeff. When one solⁿ of Homogeneous egⁿ is known, — Vacuation of Parameters (VOP) Method - Green's Function - Normal Form Method.

VIII Stavem diouville Boundary Value Problem (BVP) է 0 VIII) Green's Functions 6 4 System of Equation \mathbb{X} 领 4 - Solution Using figenvalues. 4 翻 61 4 L) PAPERE NTIAL COUATIONS $(ORDINARY)$ Ã y + defendent variable 0 x + independent variable 4 $y = f(x)$ 6 € $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, --6 0 $F(x, y, y', y'', -...) = 0$ 4 is diff. eqn. 43 I When use have only one éndependent variable the **③** à is ordinary Diff egn. 4 Ef⁸ An equation which contains dependent Variable Ø and its derivatives (w.s. to indep. variables) 6 is called $B46$ $eqy)$

for $e \cdot g$	if $a \cdot g$	if $a \cdot g$	if $a \cdot g$	if $a \cdot g$	if $a \cdot g$																			
if $a \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$	$g \cdot g$															
or $F(x, y, y', y'', y''') = 0$	if g from g																							

 \blacksquare

 \mathbf{C}

 $\epsilon_{\rm i}$

 \blacklozenge

 $\pmb{\mathit{f}}$

 \langle

 $\overline{1}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

9

0

One of list Order	Isi Dique.						
Genual Form of such equations	is						
Quenual Form of such equations	is						
by = $f(x_1y) = 0$	by						
by	the variant to find out a continuous function	by					
by	the variant to find out a continuous function	by					
by	the current of the previous solution	by					
from	to	the given solution	so	by			
from	to	the argument	so	by			
from	to	the argument	to	to			
from	to	to	to	to	to		
in	to	to	to	to	to		
in	to	to	to	to	to		
in	to	to	to	to	to	to	
in	to	to	to	to	to	to	
in	to	to	to	to	to	to	to
in	to	to	to	to	to	to	to
in	to	to	to				

\n**1**
$$
\frac{dy}{dx} = f(x, y) \quad \text{(i)} \quad \text{(General form)}
$$
\n

\n\n**2** $\frac{dy}{dx} = f(x, y) \quad \text{(ii)} \quad \text{(i)}$ \n

\n\n**3** $\frac{dy}{dx} = 6(x, y) \quad \text{(iii)}$ \n

\n\n**4** $\frac{dy}{dx} = 6(x, y) \quad \text{(iv)}$ \n

\n\n**5** $\frac{dy}{dx} = 6$ \n

\n\n**6** $\frac{dy}{dx} = 6$ \n

\n\n**7** $\frac{dy}{dx} = 6$ \n

\n\n**8** $\frac{dy}{dx} = 6$ \n

\n\n**9** $\frac{dy}{dx} = 6$ \n

\n\n**1** $\frac{dy}{$

فالتورد

PANADIST

 $\frac{1}{2}$

26 July, 2017 Syllabus I Point set topology on IR. Countability of sets $2\cdot$ 3. Sequence 2 series of reals. 4. Functions 5. Limit continuity, Uniform continuity 6. Differentiablity 7. Riemann Integration 8. Improper Integral 9. Function of bounded variation 10. Sequence 2 series of functions (Uniform convergence) 11. Several variable calculus 12. Measure Theory Book :- S.C. Malik & Savita Arora (Mathematical Analysis) γ R.G. Bartle Desmos guaphing

Standard Notations: Some Set of Natural numbers N Set of whole numbers N_{D} Set of integers Set of rational numbers $\mathbb Z$ Set of virational numbers Q_c Q_{\bullet} Set of Real-Numbers Set of complex numbers $|R$ $\mathbb C$ Arbitrary Lange representation Arbitrary Small representation ╈∞ $-\infty$ clasure of A $\overline{\mathsf{A}}$ Interior of A A° Boundary of A ∂A Derived set A' Isolated points of A $T\omega o(A)$ such that **ふた** said to be *s*, t, b. Bounded bdd. inpounded unbod neighbourhood $n \cdot b \cdot \mathcal{B}$. siguence alg convergent cgt divergent dgt limit superior tim limit inferior lin Sup(A) | gl. u.b. Supremum $\ln(4)$ pl.b. infinum maximum max A minimum min A

új

88

軇

⊛

E.

doesn't exist exist uniquely Эļ for all \forall contradiction 氺 epsilon ϵ belongs to ϵ doesn't belong \oint Union \vert) Intersection \bigcap Arbitrary Union U
AEA Arbitrary intersection \int $A \in \triangle$ Arbitrary countable Union UAn $n=1$ countable intersection $\bigwedge^{\infty}A_{\mathfrak{m}}$ $m = 1$ finite Union U An ¥ i=1 finite intersection $\bigcap_{K=1}^{K} A_{n}$ $S = P \Rightarrow Q$ converse of $S = Q \Rightarrow P$ (converse may not contrapositive is always true $NQ \Rightarrow NP$ if poseth P& g. both holds Pand q Por q or both $P \cong Q$ iff c | if and only if $P \Leftrightarrow Q$ (Necessary and sufficient) $A.M.(a_1, ... a_n)$ $a_1 + a_2 + \cdots + a_n \mid n \mid$ Airthmetic Me $G.M.(a_1 - a_n)$ $(a_1 \ a_2 - a_n)^{1/n}$ (Geometric Mean) $H.M.(a_1, ..., a_n)$ $n \rightarrow a_1 \underbrace{n}_{1+1}$ (Harmonic

Œ

52

42

₩

Ø

0

Œ

Q.

43

€

81

G

4

Ø

4

♦

 $x = 0 \leq x \leq 1$ $\{x\} = x - [x] =$ $\begin{cases} \n\begin{cases}\n\begin{array}{ccc}\n\chi & 1 \\
\chi-1 & 1 \leq \chi & 2 \\
\chi-2 & 2 \leq \chi & 3\n\end{array} \\
\begin{array}{ccc}\n\chi+1 & -1 \leq \chi & 0\n\end{cases}\n\end{cases}$ Periodic function
10 1 2 3 (Value lies b/w 021) = Modulius of x (Absolute value of x) $|x|$ $= \oint_{-\infty}^{\infty} \frac{x}{x} e^{-x^2}$ Vacus noty Teure :- if traving no counter règ. Every four legs pouson is pakistani.

Set : - A well defined collection of distinct objects. cleare cut or défined in actual $\{3x_1, x_2, --- \}$ $P(x_1)$, $P(x_2)$, ... $\}$ collection Set $|\varphi| = 0$ $|3 \circ 9| = 1$ $\xi \phi \xi$ \checkmark \checkmark 211 4 \checkmark IN_{o} $\sqrt{}$ Z_L \checkmark Q_1 Q c $\sqrt{}$ $|R$ r o $\overline{\mathbb{C}}$ every Real No. \checkmark $8xE1R: x^2 \ge 02 = 1R$ \times $\oint x \in [R : x^2 > 0]$ œ $\{1, 2, 3\}$ \diagup 6 $81, 2, 3, 4$ $\overline{\mathsf{X}}$ Œ $\{x\in R:x>0\}$ $x<0\}$ v 4 collection of fans in this class room collection of A.C. in this class room $\mathcal{O}(\epsilon)$ collection of boys students inclass ecoom 8 collection of girls student in class noon 69 6 collection of intelligent students in this 4 6 class rison collection of smart boys in class X 4 collection of beautiful boys in class.) ₩ collection of " givils in class X ▧ 11 M. Sc. degree holder " " 9 (1 for Phd. degree holder $\sum_{i=1}^{n}$

Set bounded above :- A ser H=IK is said to be sounded above if 7 KEIR A.t. X = K V XEA. otherwise set is said to be unbounded abové. K→ an upper bound of A. Note : OK'>K is an upper bound of A. (i) bad above \Leftrightarrow infinite no. of upper bounds. wij Not boad above (=> No upper bounds **SA** $\widehat{\omega}$ bad above \Rightarrow No largest upper bound. #HD Every non-empty bad above set has L.U.b. in IR. (completeness property of IR)
or Real line has no gap. ्यत्म क्षेत्रे हैं वहाँ Ulsper Bound. Upper bounds bdd. above Set IR ϕ 5, 7. $1.$ $\lceil \alpha, \infty \rangle$ 2. $\oint A^2 \frac{1}{a}$ \checkmark $[a_n,\infty)$ $\frac{1}{2}$ \checkmark \times $4.1N$ $5. N_0$ \times \times $6.$ Z_{ι} \times 7. \mathcal{Q} \times $8. Q^c$ \times q . η $(1, \infty)$ $(0,1)$ - $+$ $10.$ $[1, \infty)$ \checkmark $[0,1]$ $11 \times$ $12(0, \infty)$ (0, .) 13. $(-\infty, 0)$ $\frac{0}{-\infty}$ \cancel{x} $\left(\begin{matrix} -0\\ 0 \end{matrix}\right)$ $\left(\begin{array}{c} 1 \ \end{array}\right)$ $\mathbb{X} \vee$ $14. (-\infty, \circ).$ $15.$ $0,1)$ \cap Q $(1, \infty)$ \checkmark $16. (0,1) 10^{c}$ Γ 1,00) $\sqrt{}$

₩

☜

Complex Analy Big

بريد -33

Q)

⊛

43

69

49

❀

⊜

ා

89

4

33

ु

୍ସି

ु

Q

9

0

◈

0

◈

◈

١

3

0

0

0

☺

◈

4

0

30 may K3 : Syl llabu s : $UNIT-01$ Complex Numbers $UNIT-02$ Analytic function $UNIT-03$ Complex Integration. UNIT-04 ⋇ Important theorem and results. $UNIT-05$ Bilineau (Mobius) Transformations foundation of complex Analysis (by Ponnusar \mathcal{B} ook-* Some Standaud Notations: $\mathbb{N} \to$ set of notural numbers Ø $No \rightarrow SeE$ of Whole numbers 6 $\mathbb{Z} \rightarrow$ set of integens. ◎ $\otimes \rightarrow$ set of rational numbers set of irrational numbers $\Theta^c \rightarrow$ Set of real numbers 0 $R_{\scriptscriptstyle\perp}$ \rightarrow Set of complex numbers. (complex plane/finite comple @ \mathbb{C} \rightarrow plane) = $\mathbb{R} \cup \{-\infty, -\infty\}$ (extended real line) Ø \mathbb{K}_{∞} - Extended complex plane \oint_{∞} ◎ ϕ ψ $\{\infty\}$ $x + iy \rightarrow$ complex number Ø Z \equiv ◎ $Re(z)$ \rightarrow $Heal$ $paut$ of z Imaginary part of Z ◎ \rightarrow $Im(z)$

33 శ ۴ ್ರ \overline{z} - conjugati of z Ø </u> $l = \sqrt{1}$ - lota Ø ٩ $C \longrightarrow$ $Cuvve$ ⊜ $integration$ of f over c . $f(z)$ dz ◎ O ্ষ $\oint f(z)dz$ \rightarrow Integration of f over closed curve c. $\textcircled{3}$ Ø ⊜ ⊜ $H(D)$ \rightarrow set of Holomorphic $fu^{\underline{m}}(annalytic/regular)$ on D. $\hat{\mathbb{D}}$ @ ${\mathbb D}$ Domain ... 0 ◇ ٩ ♦ ᠿ ಾ ٥ ❀ తి ١ ١ ❀ ١ G G ☺ Q ි

الزردا

$$
a = b \neq 0
$$
\n
\n
$$
a = b \neq 0
$$
\n
$$
a^{2} - b^{2} = ab - b^{2}
$$
\n
$$
(a/b)(a+b) = b(a/b)
$$
\n
$$
a + b = b \t (wrong step)
$$
\n
$$
2b = b
$$
\n
$$
2b = 1
$$
\n
$$
x^{2} = 1
$$
\n
$$
x^{2} = \sqrt{c} \cdot b^{2}
$$
\n
$$
x^{2} = 1
$$
\n
$$
x^{2} = 2
$$
\

≋ q. Ordened field: \ast O A field F is said to be an ordered field if \exists a **@** non-empty subset P of F satisfying the following O D $O \notin P$ ░ 11) closed under addition: sc,yep⇒x+yep. ١ iii) closed under Multiplication: xyep> xyEP ٤ $\sqrt[6]{}$ for any $x \in \mathbb{F}$, exactly one of the following fiolds E. $DC = 0$ or $C \oplus P$ or $-C \oplus P$. ❀ ❀ $*$ $(R, +, \cdot)$ is an ordered field. 9 $P = \mathbb{R}^+$ \odot (9,+,.) is an ordered field. \ast $P = Q^+$ **B** $(Q(\sqrt{2}), +, \cdot)$ is an order field. ∦ ৩ ্ $*$ $(4, +, \cdot)$ is not an order field. ্ ্ $\mathcal{E}\neq 0$, $\div \iota \in P$. $i \in P$ ▒ $2, 2, 4$
 4 6 P $-i^{2}, i^{3} \in P$ ۷ $-I, I \in P$. $-1, 1 \in P$ ◈ $-\frac{1}{2}$ X (contradiction) (contradics prop. ⊜ IZ) ❀ $|0+1$ $\leq |C + \nvert d|$ \bullet $9+9b \Leftrightarrow$ $C+9$ ∗ ্ \Leftrightarrow $a = c$ ╳ ◈ $b = d$ ☜ : Ccomplex is not ordended Coording Real is an ٨ f ed) ondered fied) ١

šÿ.

⊛ Ş 4 Conjugat of complex number: ₩ 47 ્રે \overline{z} = Conjugati of Z $2x+iy$ ◈ ∞ – iy Y ◈ ZF(X,XI) = (X+1) 0 * Properties: ⊚ $\bigcirc \mathbb{R}$ $\left\langle \right\rangle$ $Z_1 + Z_2$ $\overline{z_1} + \overline{z_2}$ 4 τ $\sum_{i=1}^{n} Z_i = \sum_{i=1}^{n} Z_i$ 2\$ 0 Reflection about X-axiq N $= \overline{z_1} \cdot \overline{z_2}$ Z_1Z_2 3ϕ I 43 $\sum_{i=1}^{n} \frac{1}{\prod_{i=1}^{n} Z_i} = \prod_{i=1}^{n} \frac{1}{Z_i}$ \leftrightarrow ु ्रे 5 \overline{z} = z \bigcup $\left\langle \right\rangle$ $\left(\frac{Z_1}{Z_2}\right)$ = $\frac{\overline{Z_1}}{\overline{Z_2}}$ ॎ 4 ❀ \rightarrow $Z\overline{Z} = |z|^2$ S ١ $\left\langle \theta \right\rangle$ $\frac{z+\overline{z}}{2}$ $=$ Re(z) ۳ ❀ $\langle \cdot \rangle$ \overline{z} = z \Leftrightarrow zer $\langle \; |{\circ}\rangle$ $\frac{Z-\overline{z}}{2}$ $\mathcal{I}_{\mathbf{m}}(z)$ \equiv \mathbb{C} \overline{z} = -z \Leftrightarrow $z \in \mathfrak{k}$ R. ١ \bigcircled{S}_{\circ} ు $P(z) \in \mathbb{R}[\infty]$ ◈ $P(z) = 0 \Rightarrow P(\overline{z}) = 0$ $P(z) = 0 = Q_0 + Q_1 z + Q_2 z^2 + \cdots$ త \rightarrow $+$ $a_n z^n$; $Q_i \in \mathcal{R}$ $P(\overline{z}) = \overline{0} = Q_0 + Q_1 \overline{z} + \cdots + Q_n \overline{z}^n$ ষ্ঠ O $a_0 + a_1 \overline{z} + \cdots + a_n \overline{z}^n$ \equiv ▧ $p(z)$

Signal

# $P(z) \in 4 \text{ Fx}$] $P(z) \notin R[x]$.	\n $\exists z \in 4 \text{ s.t } P(z) = 0 \text{ but } P(\overline{z}) \neq 0$ \n	\n $\exists z \in 4 \text{ s.t } P(z) = 0 \text{ but } P(\overline{z}) \neq 0$ \n	\n $\exists z \in \{z - 2\} \setminus (z - \overline{z_1})(z - z_2)(z - \overline{z_2}) \ldots (z - z_N)(z - \overline{z_k})$ \n	\n $\forall z \in \{z + \overline{z}\} \setminus (z^2 - (z_2 + \overline{z_2})z + z_2\overline{z_2}) \ldots \land z_N = \emptyset \land \forall z \in \{z - \overline{z}\} \land \exists z \in \mathbb{Z} \land \exists z \in \math$
--	---	---	--	--

 $\frac{1}{\sqrt{2}}$

rigo -33 纞 ☜ $|x| + |y| \le \sqrt{2} \sqrt{x^2+y^2}$ 47 $\Rightarrow |x|^{2}+|y|^{2}+2|x| |y| \leq 2 (|x|^{2}+|y|^{2})$ ❀ ॎ \Rightarrow $|x|^2 + |y|^2 - 2|x||y|| \ge 0$ ☜ ⊜ $\Rightarrow (|x| - |y|)^2 \ge 0$ 47 $\langle \hat{\mathbb{Z}} \rangle$ $|z_1+z_2| \leq |z_1|+|z_2|$ (Triangulau inequality) @ ◈ $\{ \cdot \cdot \, z\overline{z} = |z|^2 \}$ $|z_1+z_2|^2 = (z_1+z_2)(\overline{z_1+z_2})$ ंोु = $(z_1+z_2)(\overline{z_1}+\overline{z_2})$ ್ರ = $|z_1|^2 + |z_2|^2 + |z_1\overline{z}_2 + z_2\overline{z}_1$ \bigcirc = $|z_1|^2$ + $|z_2|^2$ + z_1z_2 + $\overline{z_1z_2}$ \bigcirc = $|z_1|^2 + |z_2|^2 + 2Re(z_1\overline{z_2})$ \bigcirc $\leq |z_1|^2 + |z_2|^2 + 2 |z_1 \overline{z}_2| \leq \frac{1}{2} |z_1|$ 0 = $(|z_1|^2 + |z_2|)^2$ ್ರಾ $S: x \leq g$
 $\frac{1}{2} \Rightarrow \sqrt{x} \leq \sqrt{g}$ ٨ \Rightarrow |z₁+z₂| \leq |Z₁| + |Z₂| ❀ ❀ (\times) $|z_1-z_2| \leq |z_1|+|z_2|$ 0 : $\left(|z_1 + (-z_2)| \leq |z_1| + |-z_2| \right)$ ١ ☺ = $|z_1| + |z_2|$ Xer volve 0 $|z_1| - |z_2| \le |z_1 - z_2|$ (\times) ◈ \bf{Q} $|z_1| - |z_2| | \le |z_1 + z_2|$ ې ଛ proof: $|Z_1| = |Z_1 - Z_2 + Z_2| \le |Z_1 - Z_2| + |Z_2|$ ٨ \Rightarrow |Z₁ | - |Z₂ | \leq |Z₁ - Z₂| \sim ⁰ \circledcirc \Rightarrow $|z_2| - |z_1| \le |z_1 - z_2|$ --- (i) 4 $\binom{1}{3}$ | | Z₁| - | Z₂| $\binom{2}{1}$ \leq $|Z_1 - Z_2|$

$$
*\begin{array}{ccccccccc}\n\ast & \text{Bla} & \text{form of } & \text{Complex Number} & \text{Number} & \text{blue} & \text{blue}
$$

ł,

T